Accelerate Performance on the Parallel Programming Super Highway

Garth Black, SSTC 2010

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE APR 2010		2. REPORT TYPE		3. DATES COVE 00-00-2010	red) to 00-00-2010		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER			
Accelerate Perforn	nance on the Paallel	5b. GRANT NUMBER					
		5c. PROGRAM ELEMENT NUMBER					
6. AUTHOR(S)				5d. PROJECT NUMBER			
					5e. TASK NUMBER		
		5f. WORK UNIT NUMBER					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) National Instruments,11500 N Mopac Expwy,Austin,TX,78759-3504					8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT		
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited					
	otes and Systems and Sof ed in part by the US	•		-	il 2010, Salt Lake		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC		17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 25	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Presentation Highlights

- Computational programming demands continue to increase at a rapid pace despite technological challenges and limitations
- Parallelism is the [new] principal method for increasing and improving processor performance
- Dataflow programming languages address several barriers associated with parallel programming
- Dataflow languages ought to be considered along with traditional (imperative) programming solutions

Email garth.black@ni.com with questions

Programming Demands and Limitations

- Rising demand for faster execution <u>and</u> increasingly complex programming
- Clock frequency (speed) is trending to an asymptotic condition (3 GHz)
- Moore's Law may still be valid, but the Law of Thermodynamics is also valid
- Parallel Programming options exist, but can be complicated

Just increase Clock Frequency?

- Old (Conventional Wisdom)
 - Increasing clock frequency is the primary method of improving processor performance.
- New [conventional wisdom]:
 - Increasing parallelism is the primary method of improving processor performance.
- "Even representatives from Intel warned that traditional approaches to maximizing performance through maximizing clock speed have been pushed to their limit."

The Human Parallel Processor

- Billions of Nerve Cells (Neurons)
- Networks of neurons form massive parallel processing system
- Parallelism: Vision, Hearing, Motion

"Massive" CPU Parallel Processor

"Massively Parallel Processor"

- A cabinet from <u>Blue Gene</u>/L, ranked as the fourth fastest supercomputer in the world.
- More than 100 CPUs with high speed interconnect
- Analogous to Human Brain

How do we program Parallel Processes?

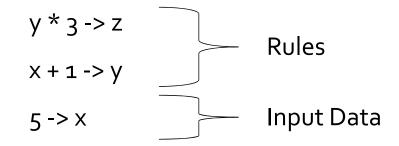
- Newsweek Article
 (Moore's Law Doesn't Matter; August 15, 2009)
- Imperative vs. Dataflow programming

Imperative Programming vs. Dataflow Programmaing

- Imperative programming is modeled as a series of operations, the data paths between operations being effectively invisible
 - Examples: C/C++, Fortran, Pascal
- Dataflow programming explicitly illustrates the "flow of data" between program operations
 - Examples: SISAL, SAC, LabVIEW, VEE

Contrast: Imperative Programming vs. Dataflow Programming

Imperative Language


Line 1: x = 5

Line 2: y = x + 1

Line 3: z = y * 3

Execute each statement in order.

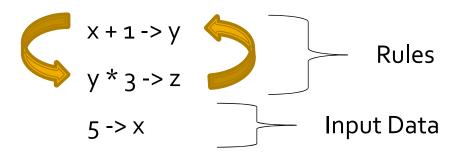
Dataflow Language

Identify all rules and then provide inputs.

The compiler determines that y needs to be calculated before z.

Contrast: Imperative Programming vs. Dataflow Programming

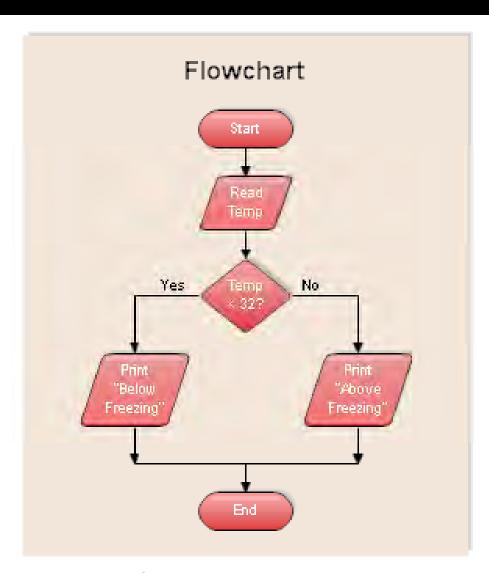
Imperative Language

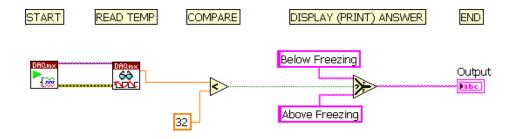

Line 1: x = 5

Line 2: y = x + 1

Line 3: z = y * 3

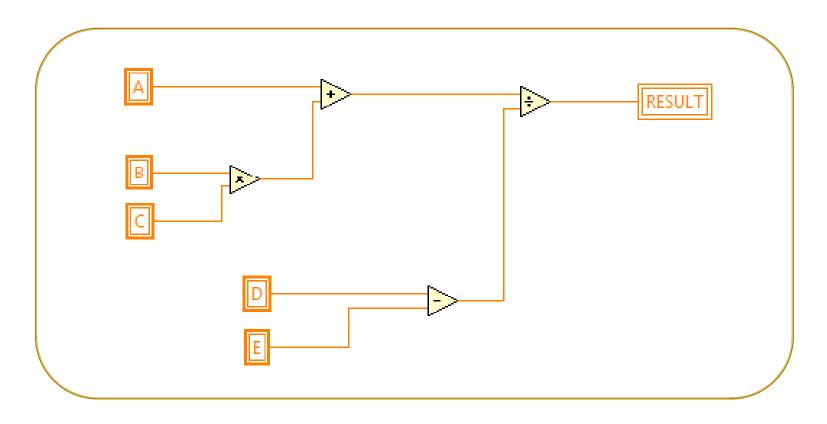
Execute each statement in order.


Dataflow Language

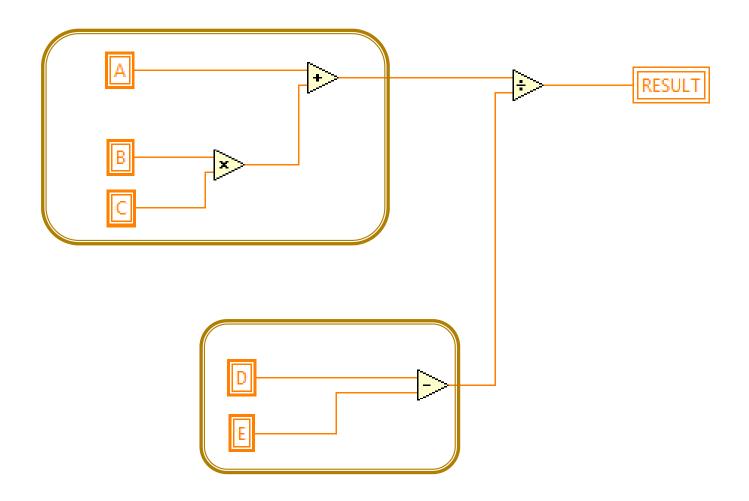

Identify all rules and then provide inputs.

The exact order of rule statements is not important in dataflow code!

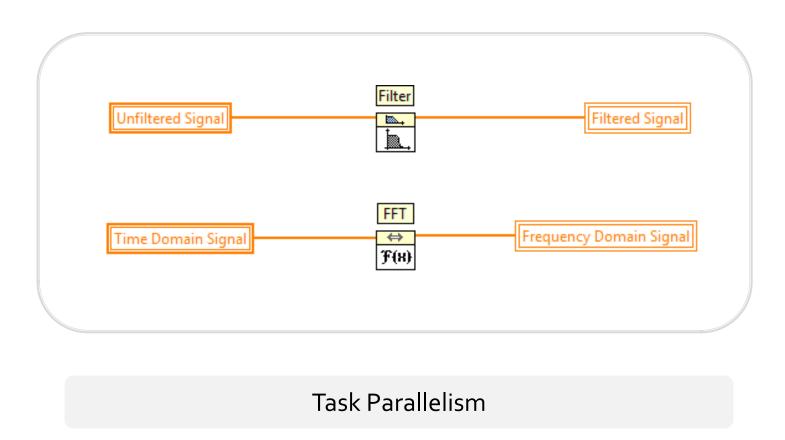
Dataflow Programming correlates to standard flowchart models



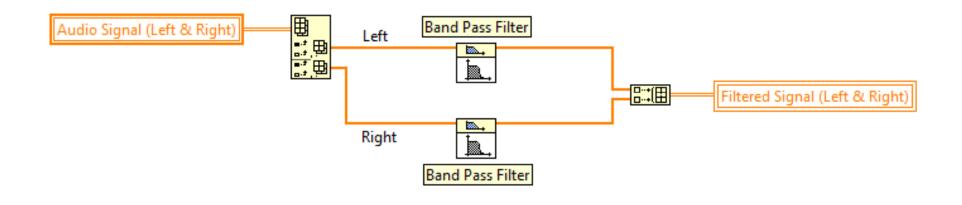
Dataflow Program


Example: A flow chart represents the relationships between inputs and outputs. Dataflow programming uses the same "flow" paradigm.

Dataflow Languages are Naturally Expressed Graphically

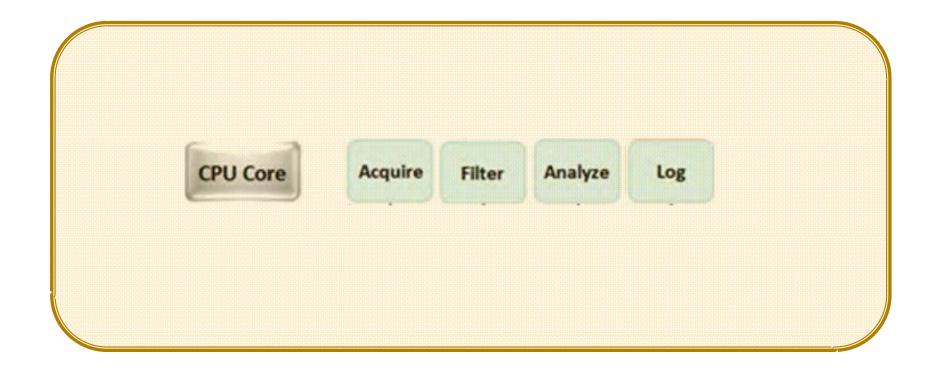

Formula: Result = (A+B*C)/(D-E)

Dataflow Languages Enable Automatic Parallelization

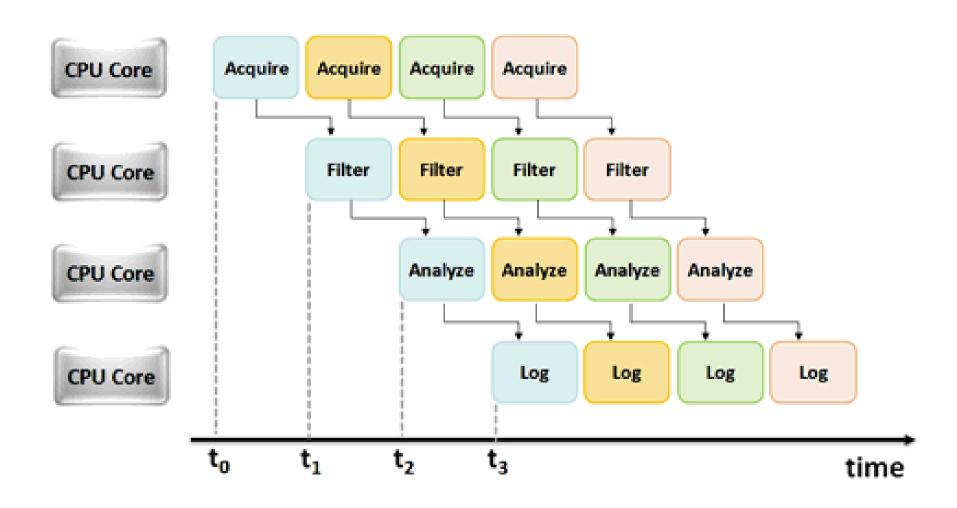


Both the multiply/add and subtract operations can execute at the same time

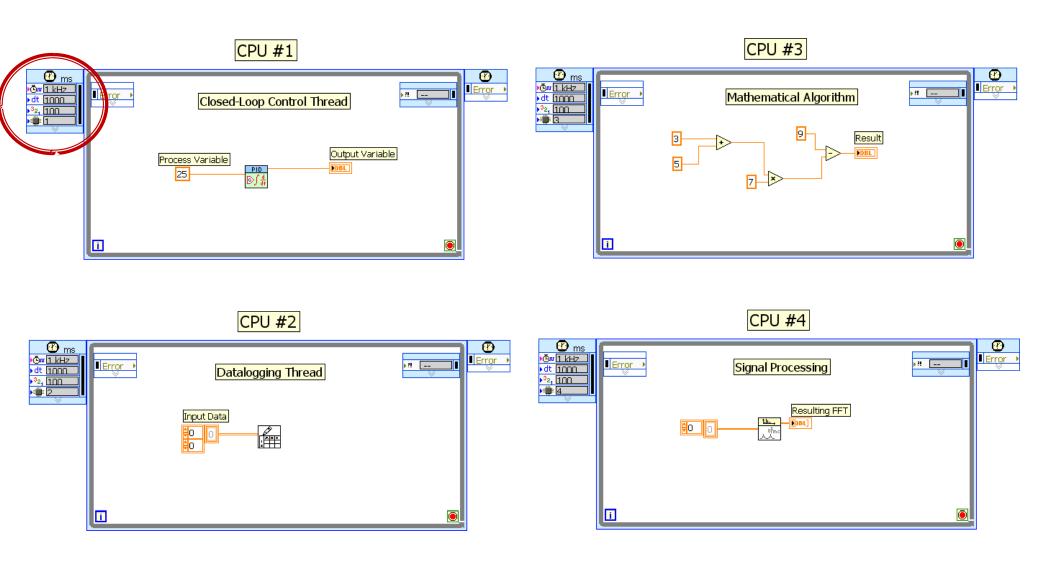
Dataflow Languages Naturally Express Parallel Applications



Dataflow Languages Naturally Express Parallel Applications

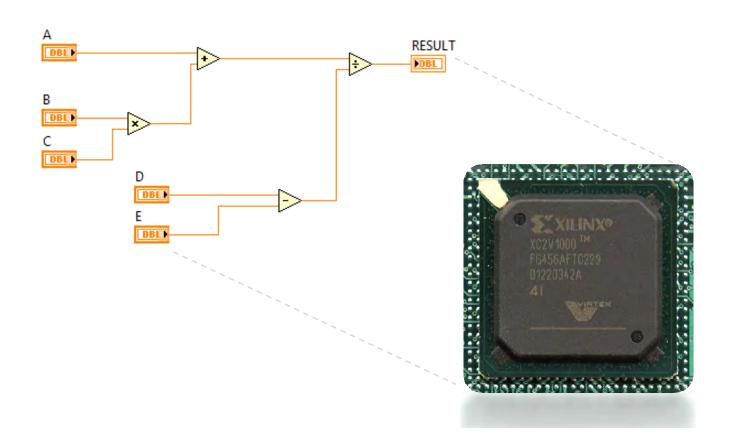


Data Parallelism


Sequential Operations

Parallel Computing: Pipelining

Parallel Operations on Multiple CPUs



Dataflow Languages are Actively Used in Academia and Industry

- Academic Efforts
 - SISAL (University of Manchester & Colorado State)
 - LUSTRE (University of Victoria)
- Commercial Products and Standards
 - VHDL (based on IEEE standards)
 - National Instruments LabVIEW
 - Agilent VEE
 - Northwoods Software Sanscript
- Many others...

Outside the CPU sphere: Other Parallel Hardware Targets

- Market is demanding smaller, cheaper, faster targets
- FPGAs, DSPs, Embedded Real-time products
- Programmable hardware targets are converging

Advantages and Caveats of Dataflow Languages

Caveats	Advantages
Typically no by-reference data accesses (by-value only)	Can be automatically be mapped to parallel hardware including multicore CPUs
Some overhead due to run- time scheduler (if present)	Naturally expressed graphically; can improve productivity
Different paradigm from imperative languages: requires a learning curve	May reduce the need for multiple development tools

Conclusions

- Increasingly parallel embedded hardware warrants new methods of parallel software development
- Dataflow languages can address some major challenges associated with parallel programming
- Many dataflow languages exist today, and should be considered along with other programming solutions

Email garth.black@ni.com with questions

NI Support at HAFB

- Skilled engineering & developer support. Current work includes:
 - Solar Radiometer System (Embedded Real-time)
 - EFV (Expeditionary Fighting Vehicle)
 - CBATS Test Platform
 - Metrology Lab
- Base Contractor's Badge
- Familiarity and history with base operation
 - Weekly Visits
 - Complimentary quarterly training sessions

Thank You

References:

[1] Whiting, P. G., & Pascoe, R. S. (1994). A History of Data-Flow Languages. *IEEE* Annals of the History of Computing, Vol. 16, No. 4, pp. 38-59.

[2] Lee, É. A., & Messerschmitt, D. G. (1987, September). Synchronous Data

Flow. Proceedings of the IEEE, Vol. 75, No. 9, pp. 1235-1245.

[3] Andrade, H. A., & Kovner, S. (1998). Software Synthesis from Dataflow Models for G and LabVIEW. Department of Electrical and Computer Engineering, University of Texas at Austin.

[4] Arvind, Culler, D. E., & Maa, G. K. (1988). Assessing the Benefits of Fine-grain Parallelism in Dataflow Programs. Labratory for Computer Science,

Massachusetts Institute of Technology.

[5] Johnston, W. M., Hanna, J.R. P., & Millar, R. J. (2004). Advances in Dataflow Programming Languages. ACM Computing Surveys, Vol. 36, No. 1, pp. 1-34.

[6] Lee, B. & Hurson, A.R. (1994). Dataflow Architectures and Multithreading.

Computer, Vol. 27, No. 8, pp. 27-39.

[7] Asanovic, Krste et al. (December 18, 2006). "The Landscape of Parallel Computing Research: A View from Berkeley" (PDF). University of California, Berkeley. Technical Report No. UCB/EECS-2006-183.

How to contact me?

Garth Black Field Engineering Manager N. Utah & E. Idaho

Phone: (801) 447-3343

E-mail: garth.black@ni.com